US009251221B1

a2z United States Patent (10) Patent No.: US 9,251,221 B1
Murphey et al. 45) Date of Patent: Feb. 2, 2016
(54) ASSIGNING SCORES TO OBJECTS BASED 2009/0328222 Al* 12/2009 Helmanetal. 726/25
ON SEARCH QUERY RESULTS 2011/0265162 Al* 10/2011 Alavandar et al. 726/7
2013/0318236 Al* 11/2013 Coatesetal. 709/224
. . 2013/0318603 Al 11/2013 Merza
(71) Applicant: Splunk Inc., San Francisco, CA (US) 5013/0326620 Al 122013 Merza et al.
2014/0160238 Al 6/2014 Yim et al.
(72) Inventors: Lucas Murphey, Wadsworth, IL. (US);
David Hazekamp, Tinley Park, IL. (US) OTHER PUBLICATIONS
. . . Bitincka, Ledion, et al., “Optimizing Data Analysis with a Semi-
(73) Assignee: Splunk Inc., San Francisco, CA (US) Structured Time Series Database”, Splunk Inc., 2010 pp. 1-9.
. Carasso, David, “Exploring Splunk Search Processing Language
(*) Notice: SUbJeCt. to any dlsclalmer,. the term of this (SPL) Primer and Cookbook”, Splunk Inc., 2012 CITO Research,
patent is extended or adjusted under 35 New York, 154 Pages.
U.S.C. 154(b) by 18 days. http://docs.splunk.com/Documentation/PCI/2.1.1/ [000119] User/
IncidentReviewdashboard, 2 Pages (Last accessed Aug. 5, 2014).
(21) Appl. No.: 14/447,995 “vSphere Monitoring and Performance”, VMware, Inc., Update 1,
vSphere 5.5, EN-001357-02, 2010-2014, pp. 1-174 http://pubs.
a1 vmware.com/ vsphere-55/topic/com.vmware.ICbase/PDF/vsphere-
(22) Filed: Jul. 31, 2014 esxi-veenter-server-551-monitoring-performance-guide.pdf.
L U.S. Appl. No. 14/167,316, filed Jan. 29, 2014.
Related U.S. Application Data U.S. Appl. No. 14/266,812, filed Apr. 30, 2014.
(60) Provisional application No. 62/027,239, filed on Jul. U.S. Appl. No. 14/266,817, filed Apr. 30, 2014.
21, 2014. . .
* cited by examiner
D IG110t6211 5173 (2006.01) Primary Examiner — Tarek Chbouki
GOGF 17/30 (200601) (74) Allorney, Ag@l’l[, or Firm — Perkins Coie LLP
(52) US.CL
CPC it GO6F 17/3053 (2013.01) 7 ABSTRACT
(58) Field of Classification Search Systems and methods for assigning scores to objects based on

(56)

CPC HO04L 43/05; GOG6F 17/3053
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

evaluating triggering conditions applied to datasets produced
by search queries in data aggregation and analysis systems.
An example method may comprise: executing, by one or
more processing devices, a search query to produce a dataset
comprising one or more data items derived from source data;
and responsive to determining that at least a portion of the
dataset satisfies a triggering condition, modifying a score

DESCRIPTION (ALERTS WHEN AN EVENT IS DISCOVERED FROM A USER f}\

SEARCH | | DATAMODEL "IDENTITY_MANAGEMENT"
"EXPIRED_IDENTITY_ACTMITY" SEARGH | STATS
MAX{_TIME} AS "LASTTIME" LATEST(_RAW) AS
"ORIG_RAW?, COUNT BY
VEXPIRED_IDENTITY_ACTMTY EXPIRED_USER" N
| RENAME "EXPIRED_|DENTITY_ACTIVITY.EXPIRED_USER'|
AS'USER"| EVAL RISK_SCORE=COUNT*10]

EDIT SEARCH IN GUIDED MODE

TIME RANGE
START TIME

125A
1258

RT+5M@M

(=

END TIME

}/130
}/135

CRON SCHEDULE*
THROTTLING

WINDOW DURATION

FIELDS TG GROUP BY

(O N
RISK SCORING
CREATE RISKMODIFER @ 145
SCORE* (80

RISK OBJECTFIELD* [USER
RISK OBJECT TYPE* [USER

86300

150
165

v}/160

165A
1658

o1ese

ACTIONS
INCLUDE IN RS$ FEED
SEND EMAIL
RUN A SCRIPT

118
110

120

8,402,012 B1* 3/2013 Herzetal. ... 707/708
$412.696 B2 42013 Zhang et al. asmgped to an object to which the portion of the dataset
8,589,403 B2 11/2013 Marquardt et al. pertains.
8,682,925 Bl 3/2014 Marquardt et al.
8,744,894 B2* 6/2014 Christiansen et al. 705/7.28 30 Claims, 17 Drawing Sheets

100~

SEARCH NAME M‘W FROM EXPIRED USER IDENTITY]\107
APPLICATION CONTEXT MS-\DENT\WANAGEMENT 3

DESCRIPTION [ALERTS WHEN AN EVENT IS DISCOVERED FROM A USER ﬁg\

SEARCH

TIME RANGE
START TIME

END TIME

CRON SCHEDULE*

THROTTLING
WINDOW DURATION

FIELDS TO GROUP BY
RISK SCORING

CREATE RISK MODIFIER

SCORE*

RISK OBJECT FIELD*

RISK OBJECT TYPE*

ACTIONS
INCLUDE IN RSS FEED

SEND EMAIL
RUN A SCRIPT

U.S. Patent Feb. 2, 2016 Sheet 1 of 17 US 9,251,221 Bl
100~
SEARCH NAME (ACTIVITY FROM EXPIRED USER IDENTITY N 107
APPLICATION CONTEXT DA-ESS-IDENTITYMANAGEMENT :}\1 15

110

| DATAMODEL "IDENTITY_MANAGEMENT"

"ORIG_RAW', COUNT BY

"EXPIRED_IDENTITY_ACTIVITY" SEARCH | STATS
MAX({_TIME) AS "LASTTIME" LATEST{_RAW) AS

"EXPIRED_IDENTITY_ACTIVITY.EXPIRED_USER"
| RENAME "EXPIRED_IDENTITY_ACTIVITY.EXPIRED_USER"
AS "USER"| EVAL RISK_SCORE=COUNT*10|

EDIT SEARCH IN GUIDED MODE
(RT-5M@M) 12oA
(RT+5M@M = 1258
[*I5****)/130
(86300 | } 130
(%]/150
[USER }/155
[USER v]/"IGO

US 9,251,221 B1

Sheet 2 of 17

Feb. 2, 2016

U.S. Patent

Z 9Ol
<LAN 7 [A CLAN O 6829676 2 Adud>
T NOLE0 NOLa0N
yool 0 TivdnaaTosad-1any ||° ¢ o HELSAS A0
BT
B8 W NoLvngiNoo Mo Aood- oy || F T 0 13134 €T 130K
W7 i T B0 Vo0V [TV v ([05 TEIES TN
TNe- G030
b0 0t ALY L anvsnowony-Lany ||° 0 HLSAS AN
TSV LR LSO
e U 09l Aord WO o Fomvoda |16 7 08¢ WALSAS LY
T NOLVOILNGHINY .
% n o0 i e | - o0 WISIS J0FSAY0
TIN4- SNOLIEN
ko5 0% T sou- oo || ° 0 WLSAS rL30H
R q T ANV Jon V- VL[¢ W S]
eV EIREE —
L 0L sonMEE STV INos e -ssov |2 ¢ 00 WLSHS w0l
I R 115 L e S e |] TSR TS T TRV
= INNOQ[+S103790 SR [39008 Y] _ = 30008 ;_58_ IO 30un0s [+ J00s SR [3L a0 wom] ; + L0arao v
09y W\ \ / . \ §304N0S INLIY LSOK o%__v/ / / / \ \ 133130 A8 2098 YSIY
8l¢c WY 050 0ST wyuny g01¢ 055
o _ | 22
=0 mnZ2
=t e 3
0% — N
09y Up> Z5¢C THIL¥3A0 STHI0N Y
(TS|~ SERR ST | T |
\ \ TOAT0YSH J0AL LTA0 5 TS
00z—" VOLZ vez— gez— ggz— ove—"

US 9,251,221 B1

Sheet 3 0f 17

Feb. 2, 2016

U.S. Patent

(quod) Z 'olI4

(IOYLLY 30404 3Ln¥a ¥
09 ATENTSISIHL) S1ARALLY NIOT G4 40 H3BANN AISSIDNASLOZLIE TIN - SNIHOT QT4 INSSINNA- $5300¥ WILSAS MODFINOM Z0:4S0 Z0-A0-hh0
“03SIIONANG) N3G SYH IALSAS THL
LYHL 3LY2IONI AW SIHE 'FH04343HL ‘SNOLLOY HI3HL J0H OL ¥3QHO NI
ST1 50T IHL ¥¥310 STWIINGLAO 40 SHTNOVLLY ‘ST 90140 OMYI1D TI04- Q3193130 ALLDY
0 40 40 NOILITI0 3L SY HONS ALIALLOY SNOTYIRONY S¥3A00910 VAL LIGAY SNOTYNONY - Liany WALSAS S00-S04-O0Md ¥E:LG0L 20000102
“ALIMOIN TWOILID TN - TV HLAA LSOH
09 HO HOIH HIWA LSOH ¥ NO GILON S NOILOTNENY NFHM S LTI ALINORSA TWILIMD 40 HOIH - INIOJONT JAISAS T00ISOH ¥ELS0 2020002
“ALIMORd TYILM) T4 - WY HLIM LSOH
0 YO HOIH HLIM LSOH Y NO Q310N SINOILOTNINY NTH SLYTTY ALIMORIA TWOLLIED MO HOIH - INIOJONE MALSAS TNV 5SS 20204402
“ALIOR LMD I~ JUVATYIE HLIW LSOH
0 4O HOIH HLIM 1SOH ¥ NO G0N SI NOILOTINI AW NFH SLETY ALIMORA THOILI) ¥O HOIH - INIOJQNT WALSAS OOINOY GBSO Z0-A0ME
(H0YLLY 30404 31N
TS8300NS ¥ 3LYIONE TN02 SHL) LANALLY 14853908 YHLIM TINY- 43193130 HOIAYH3
03 ONOTY SLARILLY NIOOT QT4 40 43NN INGS39X3$ 19310 $5300Y 30404 3LNHA - SST00Y WAISAS S00SM-OONE SIS0} 0-40-h102
(Q3LAAMONANN) XLV SY HOMLIN ZHL H3A0 GHOMSSYd TI04 - NOLLYDILNGHLOY
0 JHL LIKSNVHL LYHL SIS0 NOILYOILNBHINY SLO3130 DALY H0 FNOISNI - SSI00Y WAISAS SODAIORMOD 88504 20-40H0E
(0ALAAMONNN) LYLHYAR SY SRIOMLIN FHL H3A0 QUOMSSYd 04~ NOLLYDLINIHLY
0 THL LINSNYYL [YHL S1S3N034 NOLLYOLNTHLNY $103130 L31¥YA10 0 TNOINI- $S300Y WAISAS QOO:SAMGOMd BEUSOLZ0-L0HT
(CALAAMONINN) LYLAYATO SV ROMLIN FHL 30 QHOMSSYd 3104 - NOLLYOLLNIKLNY
08 THL LINSNYAL LYHL SISANDIM NOILYSILNGHLAY S103130 ALEYIT) 40 JNO3SNI - $S300Y WLSAS $0035 854501 Z0-A0H0C
(YOVLLY 39804 3LnE ¥ AT
0 SISHL) LANILLY NI9OT QT4 40 ¥3GWNN JAISSINASLOALI0 TIny - SNIDOTAT VS INSSIONI -SS TV WILSAS E0S0400Yd BEL501 20-L0-H0R
+ 29005 WS, v $NOILdOsaa | v = 308008 | & 3 Loara0 uo | #1oaraoiwonl ¢ Wl
0\ \ N N N / SHBHIOONASH NGO
i \)) \ !]
0ce NOLZ 0ge 8cc 9¢e A AR

U.S. Patent Feb. 2, 2016 Sheet 4 of 17 US 9,251,221 B1

. 300A

310 Execute search query
associated with alert

noe

object

FIG. 3A

U.S. Patent Feb. 2, 2016 Sheet 5 of 17 US 9,251,221 B1

350 Sort score values associated with
user selected objects

___ v

355 Cause score values to be
displayed

380
User selection of i
“score modifier received?

| yes

365 Cause information pertaining o
score modifier {0 be displayed

FIG. 3B

U.S. Patent Feb. 2, 2016 Sheet 6 of 17 US 9,251,221 B1

SOURCE SOURCE SOURCE
105 105 105
SYSTEM FORWARDER FORWARDER
168 101 101
INDEXER INDEXER INDEXER
102 102 102

SEARCH
HEAD
104

VU KR BT 00 UK O U0 KA GT 00 WA A% G0 U0 AR GG 00 XA AN 00 90 AR 0 90 Xh MK N0 WD A% A0 00 NN N 90 G0 R X0 G0 R M 90 U0
CRTREDRODERDDTEODORDD OO VLRI RD DTV ODRSBTDDDE DD

100 00 10¢ 00 00 31 ©6 GO 30 K¢ OO 40 I VO IO 30 W GO 3O 30t G GO 30 WV GO 50 0t B 6O I 06 GO GG I Gt OO 46 W GO GO I CC 0O 30 V¢ OO IO 3K V6 OO IO W0t GO IO I W CO 36 30

FIG. 4

U.S. Patent

Feb. 2, 2016 Sheet 7 of 17

RECEIVE DATA
201

APPORTION DATA INTQ EVENTS
202

DETERMINE TIMESTAMPS FROM
EVENTS
203

ASSQCIATE TIMESTAMPS WITH
EVENTS
204

TRANSFORM EVENTS
205

° IDENTIFY KEYWORDS IN EVENTS
206

........................

UPDATE KEYWORD INDEX
207

v

STORE EVENTS IN DATA STORE
208

FIG. 5

US 9,251,221 B1

U.S. Patent Feb. 2, 2016 Sheet 8 of 17 US 9,251,221 B1

SEARCH HEAD RECEIVES QUERY
FROM CLIENT fe

301

SEARCH HEAD DETERMINES WHAT §
PORTIONS OF THE QUERY CAN BE

DISTRIBUTED TO INDEXERS :
302

SEARCH HEAD DISTRIBUTES
PORTIONS OF QUERY TO
INDEXERS
303

INDEXERS SEARCH DATA STORE ¢
FOR QUERY-RESPONSIVE EVENTS §
304

SEARCH HEAD COMBINES PARTIAL §
RESULTS OREVENTS TO :
PRODUCE FINAL RESULT

305

US 9,251,221 Bl

Sheet 9 of 17

Feb. 2, 2016

U.S. Patent

L 'Old

§TNTTTTRATRTSInTIesmaTannsaranTaaT At H akt
; m IN3AZ
| Aragen ‘ogg ‘xdssiesons ‘00z ‘Evy (FETTLTEERL 2T L0 ¥I0Z T B wom—~
m ey - : INEAT
. T Py vssvesaveavhovan "‘ . \\\\
m swosyo ‘ogg 'dqdiROPUE, 00z ‘88 ETGT0TGTH0T:L0 pTOZ 7 By wom -
H oo TTTTTRAERES ' [t H ¢
; ; et ; ; IN3AT
w HI ‘0€8 ‘TwagiErEwli‘ooz ‘osos 4TI 0T /sT:80 vioz 1 By ung
w Ve : I w B
: ; ; ; piv
P S3INWA g frovmammarernanaend m JWOLES
w \\odmm T : : T : Viva
S e ¥ZT L €GO |- w ﬁ m
: T o ; Ziv :
-4 ®RapuTr P :
m Py so00 = ; | HoLovHIXT a3 L eor
e YTBeW TTOC = s H
¥ T°1T°0°0T w ry - R
sebxey az m N LOYHLKE
02t : :
SIMIVA poee DNV T38BIRE) (P (Nex T Y |
a7 w o AFEN NP AP AP\ IDE) E wwww
w + m S NOILOYHLXE
w " y0b M
zey : HOSSIDCH 4
1In53Y m { AHIND |
: Y :

el aBbIBR JUNROD S3BLS

_ reke

20

=3 T
\\&.O.ﬂ:;ﬁmw. Yoawag ABING

S OIS

U.S. Patent Feb. 2, 2016 Sheet 10 of 17 US 9,251,221 B1

Original Search: 301
seaxrch “error | staits count BY host

Sent to peers: 502
search “error | prestats count BY host {(map)

Executed by search head: 503
Merge prestats results received from peers (reduce)

FIG. 8

US 9,251,221 B1

Sheet 11 of 17

Feb. 2, 2016

U.S. Patent

Y6 "Old
D00V TINAROD 553207 = TAALIOUNOS | DOTSSTODWIWANY dIZYIYTMHOLNL = 30HN0S | AN = LSOH 09 3LNIN ILYQ #
- PEL . SRSIRVAYS 871901 ') FINONHO (04039) B AVOW 310 #
FINLHDY) SOESILIYEIMddY (v 201 X SO u;_ TAING HSOLNIDY) UGVTIZOW, J09-SAG-48 7 4NOH 3Ly0 #
=01 LONGOYdENIIS LONCOYAMOO EIRVDd CIMAWAL GLLH £68805 o)) dLLH 10LESHOVOIE WA 000'SG079 000 NI 7
§11S90S=CINOISS IS8l - E,eﬁ_s_z:eo 150d, (550781 h0zdvIE] - - 119919628l g | <
8 0A4093LY) ¥
2I4000M GINIBNOD 300V = JAALIUN0S | SOTSSIDOWMMM dIZVLYaTYINOLNL = 0HN0S | WM = LSOH +00 S31A8 4
_ _ SNOILDY ?
- 905§ SESAYYS S'b80) 061/AMONHD (04039 AT “TALHY) SSRSLYEM ST N3N
T1ddY (¥ £ 01 XSO SV TLN) ‘HSOLNIOVI) 0'SvTHZ0M, ,51-1S3=QINaLIEINNONOMO) BIRVAAN
DEILIMEMMWLGLLH, 2522 007 44} dLLH 10JES44GV044915905=CINOISSSM3609-0-8=CILONC0Y W 00098029
9961-1S3=MAL8LMYD0L00Y=NOILLOVE0T 1YY 135, (950791 pL0zdwisd] - - 1L ¥8h 9T 28l Ul | < F3dAL3400S 2
- - £30400 *
FHO0OM CINAWOD S50V = JAALIOMNOS § DT SSTIIWMMAN JIZ YLYOTYIHOLNL = JOMNOS | ZVMA= LSOH ¢ 1500 7
. n . - BGLSOES/IAvAYS S $07313 (3L 138
7901061 / INONHD (OND30 TN “TNLHY) S 9S/LINGIMTTddY (FSMOM * 19 LN SMOANIY 0SHTII
0, #-LSIFANILENNIIOMO STAVOINIEI LI dLLH, 999 007 '} dLLH SHESHOYL W 00094229 09 VIS ST
44/13903=CINOISS IS 8¥1-LS3=QIABLIINTIOTON L3, [91 228 1 0ucviaz] - -Sv'e8) S0 16 o | <
809 15 SINIAS IEER L[| squdTy= SOHMIH
AN - 6 8 L 9§ v ¢ [T AN ~0VdHI0T ~ VW04 LS
200 00O 80T LSO AL
NITI0D ¥3d ¥NOH | 609 INTIIL 103T530x NOILOTTISOLWOOZ+ LNOWOOZ ~3NITIWIL LYHaod
_AO0LOTHSAONHONVAS SNOLLNGOILOY HOWV3S \, NOILVZITYSIA Y\, SOULSILYLS '\, (61g¢) SLNAAS
~ 30K 189S 3 [T« o n ~507] Y09SEVL STINSTYHOWVIS ™ {d 00020612 PL0Sl F40438) SINIAT 610°%8
[o [~ ILTV— 0904 NV L 200 IWAROIES S0 N0 vaLing)
35079~ SY IAYS ——INTW SV AVS HIBYIS MaN o
ONILHOA3Y § HOBVZS SOWWOEHSYQ SV S04 10N | HOWVAS

00O NITHIS HOWY3S—~

US 9,251,221 B1

Sheet 12 of 17

Feb. 2, 2016

U.S. Patent

g6 "Old
Wd 000°G¥-cE: | ¥L/6E/Y GL6'CC ~F MMM
Wd 000°Lv-¢E-) vLi6L/y 665'CT AP MMM
Wd 000 vb-¢c-L vLi6ely \2z've AP MW
Wd 000°9%-¢c-L vL/i6c/y 1424 ~P S3TVS HOAN3IA
Wd 000°Lv-¢E-L vL/6E/y 628'6 ~P ASTIVN
¢ 41vddn LSVl ¢ INNOD L ¢ 1SOH

C NEIRTED

(€) S3dALIOANOS \ (8) STOUNOS \(S) SLSOH

AJVAIANS V.1vd

US 9,251,221 B1

Sheet 13 0of 17

Feb. 2, 2016

U.S. Patent

VoL "9OId

CoLrane el ne
d a3am, 3INL
oo”N_p_,Ed\ oo“N_‘“_.S_n_ 00:Z}:

11any—
gs30oy— JWIL A9 SIN3IAT I19VION

III

40 SS300¥d : ALRIIAIS WNITIW V101

1-c0.

A

¢0L

104

S1SOH V101 HIAHSDIH YO LNNOD
a3HoLVd 9AV 1SOH S1SOH SNOILI3NI:
ATINd SLSOH |/ SAILMISVEINTNA | J1gVEANTNA IuYMIVING
ze+ 7C | e 7 . 9+ GL | o+ 1 sv+ | Gy |
INNOD! INNOD! INNOD! INNOD | LINNOON|
WLOL! 10L WLOL! WVLOL | L IVLOL!
SITAVION! S3TGVLON! SITEV.LION! STIGV.LON | SITGVION |
Hanv! ALLLNIQH WHOMIIN! INIOdANT ! $S300V |

00£ MIIN HOLVIIANI AZA

US 9,251,221 B1

Sheet 14 of 17

Feb. 2, 2016

U.S. Patent

AL

STVIIOMIA CINDISSYND

NEN AHOH(D ~(3L93LIONOILYOINGHLNY DALYITDHO N3N - Ss30gy MY 00001

a0l 9Ol1d
SIWIIOMIA GINDSSYNR ~MIN ~HOHCD < GO0-A30SN) NO C3LTTR (NS INRODOY ~ SS300Y s © O
STYLIAMIA GINOISSYNY N3N ~HOH D ~(600-1S0H) N0 0313730 SIW00) INADDOY ~ 85300V Ego_@w_@m a 0O
SIVIIONIA CINOSSWA -MIN ~HOH QD - (00303600 No G20 136 ooy ~sszooy MR
SYIZOMIA CINOSSYNY -MEN ~HOH(D ~(100-80¢:00%) NO C3LTTSC A¥EaNITE) INnoooy ~Sozogy WY OIDEEITL 2
(=] |

HALR

SIVIIOMIA QINDISSYNA

NAN SHOMQD ~CROALTONOIYOLNGHINY LYALWIT0 MO n0Iont ~ssogy WYONERHH o

CHees

NVAOG
| YINMO SNLYLS AONZONN TR s ML SNOILAD L0TaS
SO TV 3| SINaA3 a0 Es Liaa| << LXaN 0168295 ¥ £2[1] A>Ty LTSN [T LoTaS
FTZ 1SI1SINIAT INLTYY 079 1SNONY WY 02671+ 0157 LSNONY WY 067 1 Owd) NILTV34) MOGNIM SNOH 72 v N SIN3AS §22
. = . . 700292 9NV NS
) LY WY 009, Y 0039 Wy 009
0 H¥IA LSV " 0
0l SEZaNNanIL SAVA 06 L8V | 07
¥NOH | =¥a} ~ 1S HYaNIT mxm%m mﬁ 103135301 NOLLOTTAS OLWO0Z Y N0 WO0Z% 30H]
I TREE)| SHNOH ¥ 18¥1 SINIAT ONHOLVN §72 A
SIENNIN 08 1SV
SIS Lo \NE a73id 35NV IWIL o)
7 = MOONMHNOR 72 * | pdl | _
sa1314 O3 TONYNEIN0D NIVWO ALEN0TS
SAINGIHLLY _ _ | _ _ HOH] _ _
INIAIDNI . : _ :
Tl RENTN AONE0HN SNLVIS

~SNOILDY | M3IAZY INZQIONI

0l AYVOgHSVAa M3IATY IN3AIONI

US 9,251,221 B1

Sheet 15 0of 17

Feb. 2, 2016

U.S. Patent

:::::::
- -
e ~

201 "Old

00N SiHL
. SL03138
T, MESH

SONVIX3

e
eeeee
.....
:::::

JOON SiHL
S1331388
4380

US 9,251,221 B1

Sheet 16 of 17

Feb. 2, 2016

U.S. Patent

aolL 'oid

N
el
i) S

e,
S,

b

,

e e

R chran,

e,

-
PR S e e

Zrs SONIW NAMDG-TIN fa]

ST By

[X

m .mmi&

,m,ﬁm 3

D e

PR

oot

.

U.S. Patent Feb. 2, 2016 Sheet 17 of 17

COMPUTING DEVICE 1000 .

US 9,251,221 B1

PROCESHING DEVICE 1002

ASSIGNING SCORE
VALUES 300A-3008

VIDED DISPLAY

i ASSIGNING SCORE
i VALUES 300A-300B

ALPHA-NUMERID
INPUTY DEVICE
1012

- 1030

STATIC MEMORY
1008

CURSOR CONTROL
DEVICE

SHINAL GENERATION
DEVICE

NETWQORK
1020

DATA STORAGE DEVICE 1018

COMPUTER-READABLE
STORAGE MEDIUM 1828

| ASSIGNING SCORF
| VALUES 300A-3008 |

FIG. 11

US 9,251,221 Bl

1
ASSIGNING SCORES TO OBJECTS BASED
ON SEARCH QUERY RESULTS

RELATED APPLICATIONS

This application claims the priority benefit of U.S. Provi-
sional Patent Application No. 62/027,239 filed on Jul. 21,
2014.

TECHNICAL FIELD

The present disclosure is generally related to data aggre-
gation and analysis systems, and is more specifically related
to assigning scores to objects based on evaluating triggering
conditions applied to datasets produced by search queries.

BACKGROUND

Modern data centers often comprise thousands of hosts that
operate collectively to service requests from even larger num-
bers of remote clients. During operation, components of these
data centers can produce significant volumes of machine-
generated data. The unstructured nature of much of this data
has made it challenging to perform indexing and searching
operations because of the difficulty of applying semantic
meaning to unstructured data. As the number of hosts and
clients associated with a data center continues to grow, pro-
cessing large volumes of machine-generated data in an intel-
ligent manner and effectively presenting the results of such
processing continues to be a priority.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure is illustrated by way of examples,
and not by way of limitation, and may be more fully under-
stood with references to the following detailed description
when considered in connection with the figures, in which:

FIG. 1 schematically illustrates an example GUI for speci-
fying security score modification rules, including search que-
ries, triggering conditions, and other information to be uti-
lized by the system for assigning and/or modifying security
risk scores associated with various objects, in accordance
with one or more aspects of the present disclosure;

FIG. 2 schematically illustrates an example GUI for visu-
ally presenting security risk scores assigned to a plurality of
objects, in accordance with one or more aspects of the present
disclosure;

FIGS. 3A-3B depict flow diagrams of example methods
300A-300B for assigning scores to objects based on evaluat-
ing triggering conditions applied to datasets produced by
search queries, in accordance with one or more aspects of the
present disclosure;

FIG. 4 presents a block diagram of an event-processing
system in accordance with one or more aspects of the present
disclosure;

FIG. 5 presents a flowchart illustrating how indexers pro-
cess, index, and store data received from forwarders in accor-
dance with one or more aspects of the present disclosure;

FIG. 6 presents a flowchart illustrating how a search head
and indexers perform a search query in accordance with one
or more aspects of the present disclosure;

FIG. 7 presents a block diagram of a system for processing
search requests that uses extraction rules for field values in
accordance with one or more aspects of the present disclo-
sure;

10

15

20

25

30

35

45

50

55

60

65

2

FIG. 8 illustrates an exemplary search query received from
a client and executed by search peers in accordance with one
or more aspects of the present disclosure;

FIG. 9A illustrates a search screen in accordance with one
or more aspects of the present disclosure;

FIG. 9B illustrates a data summary dialog that enables a
user to select various data sources in accordance with one or
more aspects of the present disclosure;

FIG. 10A illustrates a key indicators view in accordance
with one or more aspects of the present disclosure;

FIG.10B illustrates an incident review dashboard in accor-
dance with one or more aspects of the present disclosure;

FIG. 10C illustrates a proactive monitoring tree in accor-
dance with one or more aspects of the present disclosure;

FIG. 10D illustrates a screen displaying both log data and
performance data in accordance with one or more aspects of
the present disclosure;

FIG. 11 depicts a block diagram of an example computing
device operating in accordance with one or more aspects of
the present disclosure.

DETAILED DESCRIPTION

Disclosed herein are systems and methods for assigning
scores to objects based on evaluating triggering conditions
applied to datasets produced by search queries.

An example data aggregation and analysis system may
aggregate heterogeneous machine-generated data received
from various sources, including servers, databases, applica-
tions, networks, etc. The aggregated source data may com-
prise a plurality of events. An event may be represented by a
data structure that is associated with a certain point in time
and comprises a portion of raw machine data (i.e., machine-
generated data). The system may be configured to perform
real-time indexing of the source data and to execute real-time,
scheduled, or historic searches on the source data. A search
query may comprise one or more search terms specifying the
search criteria. Search terms may include keywords, phrases,
Boolean expressions, regular expressions, field names, name-
value pairs, etc. The search criteria may comprise a filter
specifying relative or absolute time values, to limit the scope
of'the search by a specific time value or a specific time range.

The example data aggregation and analysis system execut-
ing a search query may evaluate the data relative to the search
criteria to produce a resulting dataset. The resulting dataset
may comprise one or more data items representing one or
more portions of the source data that satisty the search crite-
ria. Alternatively, the resulting dataset may just include an
indication that the search criteria have been satisfied. Yet
alternatively, the resulting dataset may include a number indi-
cating how many times the search criteria have been satisfied.

The example data aggregation and analysis system may be
employed to assign scores to various objects associated with
a distributed computer system (e.g., an enterprise system
comprising a plurality of computer systems and peripheral
devices interconnected by a plurality of networks). An object
may represent such things as an entity (such as a particular
user or a particular organization), or an asset (such as a par-
ticular computer system or a particular application). In vari-
ous illustrative examples, the scores assigned by the data
aggregation and analysis system may represent security risk
scores, system performance scores (indicating the perfor-
mance of components such as hosts, servers, routers,
switches, attached storage, or virtual machines in an IT envi-
ronment), or application performance scores. In certain
implementations, the scores assigned by the data aggregation
and analysis system may belong to a certain scale. Alterna-

US 9,251,221 Bl

3

tively, the scores may be represented by values which do not
belong to any scale. In certain implementations, the scores
may be represented by dimensionless values.

In certain implementations, the data aggregation and
analysis system may adjust, by a certain score modifier value,
a risk score assigned to a certain object responsive to deter-
mining that at least a portion of a dataset produced by execut-
ing a search query satisfies a certain triggering condition. A
triggering condition can be any condition that is intended to
trigger a specific action. An example triggering condition can
trigger an action every time search criteria are satisfied (e.g.,
every time a specific user has a failed authentication attempt).
Another example is a triggering condition that can trigger an
action when a number specifying how many times search
criteria have been satisfied exceeds a threshold (e.g., when the
number of failed authentication logins of a specific user
exceeds 5). Yet another example is a triggering condition that
pertains to aggregating a dataset returned by the search query
to form statistics pertaining to one or more attributes of the
dataset that were used for aggregation, where the triggering
condition can trigger an action when the aggregated statistics
meet a criteria such as exceeding a threshold, being under a
threshold, or falling within a specified range. For example, a
dataset returned by the search query may include failed
authentication attempts for logging into any application (e.g.,
email application, CRM application, HCM application, etc.)
and initiated by numerous source IP (Internet Protocol)
addresses; the dataset may be aggregated to produce counts of
failed authentication attempts on a per application per source
basis (i.e., first aggregated by application and then further
aggregated by source); and the triggering condition may trig-
ger an action when any of the counts exceeds a threshold. It
should be noted that in some implementations, the evaluation
of the aggregated statistics can be handled as part of the
search query, and not as part of the triggering condition evalu-
ation (where the triggering condition either triggers every
time the search criteria are met or triggers when the search
criteria are met at least a minimum number of times when the
search is run).

A triggering condition may be applied to a dataset pro-
duced by a search query that is executed by the system either
in real time or according to a certain schedule. Whenever at
least a portion of the dataset returned by the search satisfies
the triggering condition, a risk score associated with a certain
object to which the portion of the dataset pertains (e.g., an
object thatis directly or indirectly referenced by the portion of
the dataset) may be modified (increased or decreased) by a
certain risk score modifier value.

In an illustrative example, the risk score associated with an
object may be modified every time the dataset returned by the
search query includes an indicator that the search criteria of
the search query are satisfied. Alternatively, the risk score
associated with an object may be modified when the number
of times the search criteria are satisfied exceeds a threshold.
Yet alternatively, the risk score associated with an object may
be modified when the aggregated statistics pertaining to the
dataset returned by the query meet specified criteria (such as
exceeding a threshold, being under a threshold, or falling
within a specified range).

The risk score modifier value may be determined based on
values of one or more fields of the portion of the dataset that
has triggered the risk score modification, as described in more
detail below.

The data aggregation and analysis system may be further
configured to present the assigned risk scores via a graphical
user interface (GUI) of a client computing device (e.g., a

40

45

60

4

desktop computing device or a mobile computing device), as
described in more detail below.

Accordingly, implementations of the present disclosure
provide an effective mechanism for managing IT security, IT
operations, and other aspects of the functioning of distributed
computer or information technology systems by adjusting
scores (e.g., security risk scores or performance scores) of
objects in response to detecting an occurrence of certain
conditions as indicated by data (e.g., the machine derived)
produced by the system. The adjusted scores of objects are
then visually presented to a user such as a system adminis-
trator to allow the user to quickly identify objects with respect
to which certain remedial actions should be taken.

Various aspects of the methods and systems are described
herein by way of example, rather than by way of limitation.
The methods described herein may be implemented by hard-
ware (e.g., general purpose and/or specialized processing
devices, and/or other devices and associated circuitry), soft-
ware (e.g., instructions executable by a processing device), or
a combination thereof.

FIG. 1 schematically illustrates an example GUI for speci-
fying security score modification rules, including search que-
ries, triggering conditions, and other information to be uti-
lized by the system for assigning and/or modifying security
risk scores associated with various objects, in accordance
with one or more aspects of the present disclosure. While
FIG. 1 and the corresponding description illustrate and refer
to security risk scores, same and/or similar GUI elements,
systems and methods may be utilized by the example data
aggregation and analysis system for specifying data searches,
triggering conditions, and other information to be utilized by
the system for assigning other types of scores, such as system
performance scores or application performance scores. Sys-
tem or application performance scores may be utilized for
quantifying various aspects of system or application perfor-
mance, e.g., in situations when no single objectively measur-
able attribute or characteristic may reasonably be employed
for the stated purpose.

As schematically illustrated by FIG. 1, example GUI 100
may comprise one or more input fields for specifying search
identifiers such as an alphanumeric name 107 and an alpha-
numeric description 110 of the security score modification
rule defined by the search. Example GUI 100 may further
comprise a drop-down list for selecting the application con-
text 115 associated with the search. In an illustrative example,
the application context may identify an application of a cer-
tain platform, such as the SPLUNK® ENTERPRISE system
produced by Splunk Inc. of San Francisco, Calif., which is
described in more details herein below).

In certain implementations, example GUI 100 may further
comprise a text box 120 for specifying a search query string
comprising one or more search terms specifying the search
criteria. The search query string may comply with the syntax
of'a certain query language supported by the data aggregation
and retrieval system, such as Splunk Search Processing Lan-
guage (SPL) which is further described herein below. Alter-
natively, the search query may be specified using other input
mechanisms, such as selecting the search query from a list of
pre-defined search queries, or building the search query using
a wizard comprising a plurality of pre-defined input fields.

Example GUI 100 may further comprise a start time and
end time input field’s 125A-125B. In an illustrative example,
the start time and end time may define a time window speci-
fied relative to the current time (e.g., from 5 minutes before
the current time to the current time). The start time and end
time input fields specify the time range limiting the scope of
the search, i.e., instructing the example data aggregation and

US 9,251,221 Bl

5

analysis system to perform the search query on the source
data items (e.g., events) that have timestamps falling within
the specified time range.

Example GUI 100 may further comprise a schedule input
field 130 to define the schedule according to which the search
query should be executed by the example data aggregation
and analysis system. The schedule may be represented by a
data structure comprising values of one or more scheduling
parameters (e.g., minute, hour, day, month, and/or day-of-
week). Executing search query according to a certain sched-
ule may be useful, e.g., for a search query that has its scope
limited by a time window specified relative to the time the
query query is run (e.g., from 5 minutes before the time of
beginning execution of the query to the time of beginning
execution of the query).

Example GUI 100 may further comprise a throttling win-
dow input field 135 and a grouping field selection field 140 to
define a throttling condition. The throttling condition may be
utilized to suppress, for a certain period of time (e.g., for a
number of seconds specified by field 135), triggering the
score modification and/or other actions associated with the
search query. Grouping field 140 may be utilized to select a
field by the value of which the search results should be
grouped for evaluating the throttling condition. In other
words, the example data aggregation and analysis system
may suppress the actions associated with the search query for
a specified number of seconds for the search results that
include the same value in the specified field (e.g., the same
user identifier in the “user” field shown in the grouping field
140 in the illustrative example of FIG. 1).

Example GUI 100 may further comprise a “Create risk
score modifier” checkbox 145 specifying that the specified
risk score modification actions should be performed based on
a trigger condition resulting from execution of the search
query.

As noted herein above, the data aggregation and analysis
system may be configured to adjust, by a certain risk score
modifier value, the risk score assigned to one or more objects
responsive to determining that at least a portion of a dataset
produced by the search satisfies a particular triggering con-
dition. In an illustrative example, the risk score associated
with an object may be modified every time the search query
returns an indicator that the search criteria are satisfied. Alter-
natively, the risk score associated with an object may be
modified when the number of times the search criteria were
satisfied exceeds a threshold. In yet another example, the risk
score associated with an object may be modified when the
aggregated statistics pertaining to the dataset returned by the
search query meets certain criteria (e.g., exceeding a thresh-
old, being under a threshold, or falling within a certain range).

In the illustrative example of FIG. 1, the risk score modifier
value is specified by input field 150 as a constant integer
value. Alternatively, the risk score modifier value may be
determined by performing certain calculations on one or
more data items (referenced by the corresponding fields
names) that are identified by the search query as meeting the
critieria of the query. Risk score modifiers may be provided
by positive or negative values. A positive risk score modifier
value may indicate that the total risk score associated with an
object should be increased (e.g., if the object represents a user
who has been engaged in an activity associated with an
elevated risk score value). A negative risk score modifier
value may indicate that the total risk score associated with an
object should be decreased (e.g., if the object represents a
system administrator who has been engaged in an activity
that, if performed by a non-privileged user, would appear as
associated with an elevated risk score value). The object

10

15

20

25

30

35

40

45

50

55

60

65

6

whose score should be modified may be identified by a field in
the data meeting the search criteria and/or triggering condi-
tion.

In an illustrative example, each occurrence of a certain
pre-defined state or situation defined by the search criteria
may necessitate modifying a risk score assigned to an object
by a certain integer value. The arithmetic expression defining
the risk score modifier may specify that the integer value
should be multiplied by the number of occurrences of the state
or situation returned by the search query (e.g., if a failed login
attempt increases a user’s risk score by 10, the arithmetic
expression defining the risk score modifier may specity the
value being equal to 10*N, wherein N is the number of failed
login attempts). In another illustrative example, the risk score
modifier may be proportional to a metric associated with a
certain activity (e.g., if each kilobyte of VPN traffic increases
the user’s risk score by 12, the arithmetic expression defining
the risk score modifier may specify the value being equal to
12*T/1024, wherein T is the amount of VPN traffic, in bytes,
associated with the user, and 1024 is the number of bytes ina
kilobyte; in this case, the number of kilobytes of VPN traffic
may be extracted from a field in the data that met the search
criteria and resulted in the triggering condition). Likewise,
the object whose score should be modified may be identified
from a field in the data that met the search criteria and resulted
in the triggering condition.

Example GUI 100 may further comprise a risk object field
155 to identify the object whose risk score should be modified
by the example data aggregation and analysis system. The
risk object may be identified by a data item (such as by a field
in the data item that is referenced by the field name 155)
included in a dataset produced by the search query. Example
objects may include a user, a computer system, a network, an
application, etc.

In certain implementations, should the identified field
name contain an empty value, the example data aggregation
and analysis system may apply the risk score modifier to the
risk score associated with a placeholder (or fictitious) object
used for accumulating risk score modifiers that cannot be
traced to a particular known object. In an illustrative example,
the fictitious object to which risk score modifiers associated
with unidentified objects are applied may be referenced by a
symbolic name (e.g., UNKNOWN object). Applying risk
score modifiers associated with unidentified objects to a fic-
titious object may be utilized to attract a user’s attention to the
fact that certain objects associated with non-zero (or even
significant) risk scores could not be identified by the system.

Example GUI 100 may further comprise a risk object type
field 160 to identify the type of risk object 155. In various
illustrative examples, the risk object type may be represented
by one of the following types: an entity (such as a user or an
organization), an asset (such as a computer system or an
application), or a user-defined type (e.g., a building).

Example GUI 100 may further comprise one or more
action check-boxes 165A-165C to specify one or more
actions to be performed by the system responsive to deter-
mining that at least a portion of the dataset produced by
executing the specified search query satisfies the specified
triggering condition. The actions may include, for example,
sending an e-mail message comprising the risk score modifier
value and/or at least part of the dataset that has triggered the
risk score modification, creating an RSS feed comprising the
risk score modifier value and/or at least part of the dataset that
has triggered the risk score modification, and/or executing a
shell script having at least one parameter defined based on the
score.

US 9,251,221 Bl

7

In certain implementations, the specified actions may be
performed with respect to each result produced by the search
query defined by query input field 110 (in other words, the
simplest triggering condition is applied to the resulting
dataset requiring that the resulting dataset comprise a non-
zero number of results). Alternatively, an additional trigger-
ing condition may be applied to the resulting dataset pro-
duced by the search query (e.g., comparing the number of
data items in the resulting dataset produced to a certain con-
figurable integer value or performing a secondary search on
the dataset produced by executing the search query).

In certain implementations, responsive to modifying a
score assigned to the primary object, the example data aggre-
gation and analysis system may also modify scores assigned
to one or more additional objects that are associated with the
primary object. For example, if a security risk score assigned
to an object representing a user’s laptop is modified respon-
sive to a certain triggering condition, the system may further
modify the security risk score assigned to the object repre-
senting the user himself. In an illustrative example, the
example data aggregation and analysis system may identify
one or more additional objects associated with the primary
objects based on one or more object association rules. In
another illustrative example, the example data aggregation
and analysis system may identify one or more additional
objects associated with the primary objects based on perform-
ing a secondary search using a pre-defined or dynamically
constructed search query. The risk score modifier value to be
applied to the associated additional object may be determined
based on the risk score modifier value of the primary object
and/or one or more object association rules. In an illustrative
example, an object association rule may specify that the risk
score modifier value of an additional object (e.g., a user)
associated with a primary object (e.g., the user’s laptop) may
be determined as a certain fraction of the risk score modifier
value of the primary object.

As noted herein above, the example data aggregation and
analysis system may be further configured to present the
assigned security risk scores via a graphical user interface
(GUI) of a client computing device (e.g., a desktop comput-
ing device or a mobile computing device). FIG. 2 schemati-
cally illustrates an example GUI for visually presenting secu-
rity risk scores assigned to a plurality of objects, in
accordance with one or more aspects of the present disclo-
sure. While FIG. 2 and the corresponding description illus-
trate and refer to security risk scores, the same and/or similar
GUI elements, systems, and methods may be utilized by the
example data aggregation and analysis system for visually
presenting other types of scores, such as system performance
scores or application performance scores.

As schematically illustrated by FIG. 2, example GUI 200
may comprise several panels 210A-210N to dynamically
present graphical and/or textual information associated with
security risk scores. In the illustrative example of FIG. 2,
example GUI 200 may further comprise a panel 210A show-
ing a graph 232 representing the total risk score value
assigned to a selected set of objects within the time period
identified by time period selection dropdown control 234.
The set of objects for displaying the risk score values may be
specified by the risk object identifier (input field 236), and/or
risk object type (input field 238). The risk score values may be
further filtered by specifying the risk object sources (e.g., risk
score modification rules) via input field 240.

Example GUI 200 may further comprise panel 210B rep-
resenting, in a rectangular table, risk scores (column 242)
assigned to a plurality of objects identified by symbolic
names (column 244). The set of objects for which the scores

10

15

20

25

30

35

40

45

50

55

60

65

8

are displayed and/or the risk scores to be displayed may be
limited by one or more parameters specified by one or more
fields of the input panel 210A, such as only displaying risk
modifiers resulting from selected search/trigger combina-
tions (source pull down menu 240), only displaying objects of
a given object type (pull down menu 238), only displaying
particular objects entered in the box 236, or calculating the
scores for displayed objects by aggregating only those risk
score modifiers for each displayed object that occur with a
time range specified in time-range pulldown menu 234.

The table entries displayed within display panel 210B may
be sorted, e.g., in a descending order of total risk score asso-
ciated with the corresponding object, thus allowing the user to
focus on the objects associated with the largest values of risk
security scores. Panel 210B may further comprise column
246 showing the object type (e.g., a user type, a system type,
or a user-defined type). In the illustrative example of FIG. 2,
the object types shown in column 246 may match the object
type specified by pull-down menu 238. Panel 210A may
further comprise column 248 showing the number of search/
trigger/score rules (each of which is referred to as a “source”)
contributing to the total risk score associated with the object
identified by column 244 (or, in other words, the number of
rules for which the object has satisfied the triggering condi-
tion). Panel 210A may further comprise column 250 showing
the number of individual risk score modifiers reflected by the
total risk score associated with the object identified by col-
umn 242 (or, in other words, the number of times when a
triggering condition was met by the object).

Example GUI 200 may further comprise panel 210C rep-
resenting, in a rectangular table, aggregate risk score values
of'the various risk modifiers grouped by the sources (e.g., risk
score modification rules identified by symbolic names in
column 212) that generated the risk modifiers and ordered in
the descending order of the risk score value (column 214).
Panel 210C may further comprise column 216 showing the
number of objects having their risk score values modified by
the corresponding source, and column 218 showing the num-
ber ofindividual risk score modifiers reflected by the total risk
score value identified by column 214.

Example GUI 200 may further comprise a panel 210N
representing, in a rectangular table, the most recently created
risk modifiers (the score for which is provided in column 220,
and a description of the risk score rule that generated the risk
modifier is provided in column 230). Each row may display
the object whose score is affected by the risk modifier repre-
sented by that row (column 222). The table entries may be
ordered in the reverse time order (most recent entries first)
based on the risk modifier creation time (column 224). Panel
210N may further comprise column 226 showing the object
type for the object in column 222, column 228 showing the
risk modifier source (e.g., a symbolic name referencing the
risk score modification rule that generated the risk modifier
represented in a given row).

In certain implementations, the example data aggregation
and analysis system may allow a user to “drill down” to the
underlying data that has triggered a particular risk score
modifier. For example, responsive to receiving the user’s
selection of a particular risk score modifier, the system may
display further information pertaining to the selected modi-
fier, such as the underlying portion of the data that has trig-
gered the risk score modifier.

In certain implementations, the example data aggregation
and analysis system may provide an “ad hoc” score modifi-
cation interface to allow a user to adjust risk score modifiers
assigned to certain objects. In an illustrative example, a user

US 9,251,221 Bl

9

may increase or decrease a risk score value assigned to a
certain object or a group of objects.

FIGS. 3A-3C depict flow diagrams of example methods
300A-300B for assigning scores to objects based on evaluat-
ing triggering conditions applied to datasets produced by
search queries. Methods 300A-300B and/or each of their
respective individual functions, routines, subroutines, or
operations may be performed by one or more general purpose
and/or specialized processing devices. Two or more func-
tions, routines, subroutines, or operations of methods 300A-
300B may be performed in parallel or in an order that may
differ from the order described above. In certain implemen-
tations, one or more of methods 300A-300B may be per-
formed by a single processing thread. Alternatively, methods
300A-300B may be performed by two or more processing
threads, each thread executing one or more individual func-
tions, routines, subroutines, or operations of the respective
method. In an illustrative example, the processing threads
implementing methods 300A-300B may be synchronized
(e.g., using semaphores, critical sections, and/or other thread
synchronization mechanisms). Alternatively, the processing
threads implementing methods 300A-300B may be executed
asynchronously with respect to each other. In an illustrative
example, methods 300A-300B may be performed by an
example computing device 1000 described herein below with
references to FIG. 11. In another illustrative example, meth-
0ds 300A-300B may be performed by a distributed computer
system comprising two or more example computing devices
1000.

FIG. 3 A depict a flow diagram of an example method 300A
for modifying score values assigned to certain objects based
on search query results, in accordance with one or more
aspects of the present disclosure.

Referring to FIG. 3A, at block 310, the computer system
implementing the method may execute a search query. In an
illustrative example, the search query may represent a real-
time search (e.g., may repeatedly be executed by a certain
process or thread in an indefinite loop which may be inter-
rupted by occurrences of certain terminating conditions). In
another illustrative example, the search query may represent
a scheduled search (e.g., may be executed according to a
certain schedule), as described in more details herein above.

Responsive to determining, at block 315, that a portion of
the dataset produced by the search query satisfies a triggering
condition defined by a risk score modification rule associated
with the search query, the processing may continue at block
320; otherwise, the processing associated with the current
search query instance may terminate.

Atblock 320, the computer system may modify arisk score
value of a certain primary object by a risk score modifier
value. The primary object may be identified based on values
of'one or more fields of the portion of the dataset returned by
the search query, in accordance with the risk score modifica-
tion rule associated with the search query, as described in
more details herein above. The risk score modifier values may
be determined in accordance with the risk score modification
rule associated with the search query. In an illustrative
example, the risk score modifier value applicable to a certain
object may be defined as a constant integer value. Alterna-
tively, the risk score modifier value may be determined by
performing certain calculations on one or more data items
(e.g., by extracting values for fields in the data items that are
used in the calculation) included in the resulting dataset pro-
duced by the search query. In an illustrative example, the risk
score modifier value may be specified by a certain arithmetic
expression. The arithmetic expression may comprise one or
more arithmetic operations to be performed on two or more

5

10

15

20

25

30

40

45

55

60

65

10

operands. Each of the operands may be represented by a value
of a data item (referenced by the corresponding field name)
included in the resulting dataset produced by the search query
or by a certain constant value.

At block 330, the computer system may modify risk score
values of certain objects associated with the primary object.
The example data aggregation and analysis system may iden-
tify one or more objects associated with the primary object
based on one or more object association rules. The risk score
modifier value to be applied to the associated additional
object may be determined based on the risk score modifier
value of the primary object and/or one or more object asso-
ciation rules, as described in more details herein above with
references to FIG. 1.

FIG. 3B depicts a flow diagram of an example method
300B for presenting score modifier information, in accor-
dance with one or more aspects of the present disclosure. As
noted herein above, method 300B may be implemented by a
server (e.g., a presentation server) and/or by one or more
clients of the distributed computer system operating in accor-
dance with one or more aspects of the present disclosure.

Referring to FIG. 3B, at block 350, the computer system
implementing the method may sort the score modifier infor-
mation associated with certain objects in an order reflecting
the corresponding score modifier values (e.g., in the descend-
ing order of the score modifier values). The objects for dis-
playing the associated score modifier information may be
selected by a user via a GUI, as described in more details
herein above with reference to FIG. 2.

At block 355, the computer system may cause the score
modifier information to be displayed by a client computing
device, as described in more details herein above with refer-
ence to FI1G. 2.

Responsive to receiving, at block 360, a user’s selection of
a particular score modifier of the displayed score modifiers,
the computer system may, at block 365, cause further infor-
mation pertaining to the selected modifier to be displayed,
including the underlying portion of the dataset that has trig-
gered the risk score modifier.

The systems and methods described herein above may be
employed by various data processing systems, e.g., data
aggregation and analysis systems. In certain implementa-
tions, the example data aggregation and analysis system may
perform search queries on data (e.g., relating to the security of
an [T environment or related to the performance of compo-
nents in that IT environment) that is stored as “events,”
wherein each event comprises a portion of machine data
generated by the computer or IT environment and that is
correlated with a specific point in time. In various illustrative
examples, the data processing system may be represented by
the SPLUNK® ENTERPRISE system produced by Splunk
Inc. of San Francisco, Calif., to store and process perfor-
mance data. The data processing system may be configured to
execute search queries as correlational searches, as described
in more details herein below. In certain implementations, the
risk scoring framework may be included in an application like
the SPLUNK® APP FOR ENTERPRISE SECURITY.

Modern data centers often comprise thousands of host
computer systems that operate collectively to service requests
from even larger numbers of remote clients. During opera-
tion, these data centers generate significant volumes of per-
formance data and diagnostic information that can be ana-
lyzed to quickly diagnose performance problems. In order to
reduce the size of this performance data, the data is typically
pre-processed prior to being stored based on anticipated data-
analysis needs. For example, pre-specified data items can be
extracted from the performance data and stored in a database

US 9,251,221 Bl

11

to facilitate efficient retrieval and analysis at search time.
However, the rest of the performance data is not saved and is
essentially discarded during pre-processing. As storage
capacity becomes progressively cheaper and more plentiful,
there are fewer incentives to discard this performance data
and many reasons to keep it.

This plentiful storage capacity is presently making it fea-
sible to store massive quantities of minimally processed per-
formance data at “ingestion time” for later retrieval and
analysis at “search time.” Note that performing the analysis
operations at search time provides greater flexibility because
it enables an analyst to search all of the performance data,
instead of searching pre-specified data items that were stored
at ingestion time. This enables the analyst to investigate dif-
ferent aspects of the performance data instead of being con-
fined to the pre-specified set of data items that were selected
at ingestion time.

However, analyzing massive quantities of heterogeneous
performance data at search time can be a challenging task. A
data center may generate heterogeneous performance data
from thousands of different components, which can collec-
tively generate tremendous volumes of performance data that
can be time-consuming to analyze. For example, this perfor-
mance data can include data from system logs, network
packet data, sensor data, and data generated by various appli-
cations. Also, the unstructured nature of much of this perfor-
mance data can pose additional challenges because of the
difficulty of applying semantic meaning to unstructured data,
and the difficulty of indexing and querying unstructured data
using traditional database systems.

These challenges can be addressed by using an event-based
system, such as the SPLUNK® ENTERPRISE system pro-
duced by Splunk Inc. of San Francisco, Calif., to store and
process performance data. The SPLUNK® ENTERPRISE
system is the leading platform for providing real-time opera-
tional intelligence that enables organizations to collect,
index, and harness machine-generated data from various
websites, applications, servers, networks, and mobile devices
that power their businesses. The SPLUNK® ENTERPRISE
system is particularly useful for analyzing unstructured per-
formance data, which is commonly found in system log files.
Although many of the techniques described herein are
explained with reference to the SPLUNK® ENTERPRISE
system, the techniques are also applicable to other types of
data server systems.

In the SPLUNK® ENTERPRISE system, performance
data is stored as “events,” wherein each event comprises a
collection of performance data and/or diagnostic information
that is generated by a computer system and is correlated with
a specific point in time. Events can be derived from “time
series data,” wherein time series data comprises a sequence of
data points (e.g., performance measurements from a com-
puter system) that are associated with successive points in
time and are typically spaced at uniform time intervals.
Events can also be derived from “structured” or “unstruc-
tured” data. Structured data has a predefined format, wherein
specific data items with specific data formats reside at pre-
defined locations in the data. For example, structured data can
include data items stored in fields in a database table. In
contrast, unstructured data does not have a predefined format.
This means that unstructured data can comprise various data
items having different data types that can reside at different
locations. For example, when the data source is an operating
system log, an event can include one or more lines from the
operating system log containing raw data that includes dif-
ferent types of performance and diagnostic information asso-
ciated with a specific point in time. Examples of data sources

20

30

40

45

55

12

from which an event may be derived include, but are not
limited to: web servers; application servers; databases; fire-
walls; routers; operating systems; and software applications
that execute on computer systems, mobile devices, and sen-
sors. The data generated by such data sources can be produced
in various forms including, for example and without limita-
tion, server log files, activity log files, configuration files,
messages, network packet data, performance measurements
and sensor measurements. An event typically includes a
timestamp that may be derived from the raw data in the event,
or may be determined through interpolation between tempo-
rally proximate events having known timestamps.

The SPLUNK® ENTERPRISE system also facilitates
using a flexible schema to specify how to extract information
from the event data, wherein the flexible schema may be
developed and redefined as needed. Note that a flexible
schema may be applied to event data “on the fly,” when it is
needed (e.g., at search time), rather than at ingestion time of
the data as in traditional database systems. Because the
schema is not applied to event data until it is needed (e.g., at
search time), it is referred to as a “late-binding schema.”

During operation, the SPLUNK® ENTERPRISE system
starts with raw data, which can include unstructured data,
machine data, performance measurements or other time-se-
ries data, such as data obtained from weblogs, syslogs, or
sensor readings. It divides this raw data into “portions,” and
optionally transforms the data to produce timestamped
events. The system stores the timestamped events in a data
store, and enables a user to run queries against the data store
to retrieve events that meet specified criteria, such as contain-
ing certain keywords or having specific values in defined
fields. Note that the term “field” refers to a location in the
event data containing a value for a specific data item.

As noted above, the SPLUNK® ENTERPRISE system
facilitates using a late-binding schema while performing que-
ries on events. A late-binding schema specifies “extraction
rules” that are applied to data in the events to extract values for
specific fields. More specifically, the extraction rules for a
field can include one or more instructions that specify how to
extract a value for the field from the event data. An extraction
rule can generally include any type of instruction for extract-
ing values from data in events. In some cases, an extraction
rule comprises a regular expression, in which case the rule is
referred to as a “regex rule.”

In contrast to a conventional schema for a database system,
a late-binding schema is not defined at data ingestion time.
Instead, the late-binding schema can be developed on an
ongoing basis until the time a query is actually executed. This
means that extraction rules for the fields in a query may be
provided in the query itself, or may be located during execu-
tion of the query. Hence, as an analyst learns more about the
data in the events, the analyst can continue to refine the
late-binding schema by adding new fields, deleting fields, or
changing the field extraction rules until the next time the
schema is used by a query. Because the SPLUNK® ENTER-
PRISE system maintains the underlying raw data and pro-
vides a late-binding schema for searching the raw data, it
enables an analyst to investigate questions that arise as the
analyst learns more about the events.

In the SPLUNK® ENTERPRISE system, a field extractor
may be configured to automatically generate extraction rules
for certain fields in the events when the events are being
created, indexed, or stored, or possibly at a later time. Alter-
natively, a user may manually define extraction rules for fields
using a variety of techniques.

Also, a number of “default fields” that specify metadata
about the events rather than data in the events themselves can

US 9,251,221 Bl

13

be created automatically. For example, such default fields can
specify: a timestamp for the event data; a host from which the
event data originated; a source of the event data; and a source
type for the event data. These default fields may be deter-
mined automatically when the events are created, indexed or
stored.

In some embodiments, a common field name may be used
to reference two or more fields containing equivalent data
items, even though the fields may be associated with different
types of events that possibly have different data formats and
different extraction rules. By enabling a common field name
to be used to identify equivalent fields from different types of
events generated by different data sources, the system facili-
tates use of a “common information model” (CIM) across the
different data sources.

FIG. 4 presents a block diagram of an exemplary event-
processing system 100, similar to the SPLUNK® ENTER-
PRISE system. System 100 includes one or more forwarders
101 that collect data obtained from a variety of different data
sources 105, and one or more indexers 102 that store, process,
and/or perform operations on this data, wherein each indexer
operates on data contained in a specific data store 103. These
forwarders and indexers can comprise separate computer sys-
tems in a data center, or may alternatively comprise separate
processes executing on various computer systems in a data
center.

During operation, the forwarders 101 identify which
indexers 102 will receive the collected data and then forward
the data to the identified indexers. Forwarders 101 can also
perform operations to strip out extrancous data and detect
timestamps in the data. The forwarders next determine which
indexers 102 will receive each data item and then forward the
data items to the determined indexers 102.

Note that distributing data across different indexers facili-
tates parallel processing. This parallel processing can take
place at data ingestion time, because multiple indexers can
process the incoming data in parallel. The parallel processing
can also take place at search time, because multiple indexers
can search through the data in parallel.

System 100 and the processes described below with respect
to FIGS. 5-10 are further described in “Exploring Splunk
Search Processing Language (SPL) Primer and Cookbook”
by David Carasso, CITO Research, 2012, and in “Optimizing
Data Analysis With a Semi-Structured Time Series Database”
by Ledion Bitincka, Archana Ganapathi, Stephen Sorkin, and
Steve Zhang, SLAML, 2010, each of which is hereby incor-
porated herein by reference in its entirety for all purposes.

FIG. 5 presents a flowchart illustrating how an indexer
processes, indexes, and stores data received from forwarders
in accordance with the disclosed embodiments. At block 201,
the indexer receives the data from the forwarder. Next, at
block 202, the indexer apportions the data into events. Note
that the data can include lines of text that are separated by
carriage returns or line breaks and an event may include one
or more of these lines. During the apportioning process, the
indexer can use heuristic rules to automatically determine the
boundaries of the events, which for example coincide with
line boundaries. These heuristic rules may be determined
based on the source of the data, wherein the indexer can be
explicitly informed about the source of the data or can infer
the source of the data by examining the data. These heuristic
rules can include regular expression-based rules or delimiter-
based rules for determining event boundaries, wherein the
event boundaries may be indicated by predefined characters
or character strings. These predefined characters may include
punctuation marks or other special characters including, for
example, carriage returns, tabs, spaces or line breaks. In some

10

15

20

25

30

35

40

45

50

55

60

65

14

cases, a user can fine-tune or configure the rules that the
indexers use to determine event boundaries in order to adapt
the rules to the user’s specific requirements.

Next, the indexer determines a timestamp for each event at
block 203. As mentioned above, these timestamps can be
determined by extracting the time directly from data in the
event, or by interpolating the time based on timestamps from
temporally proximate events. In some cases, a timestamp can
be determined based on the time the data was received or
generated. The indexer subsequently associates the deter-
mined timestamp with each event at block 204, for example
by storing the timestamp as metadata for each event.

Then, the system can apply transformations to data to be
included in events at block 205. For log data, such transfor-
mations can include removing a portion of an event (e.g., a
portion used to define event boundaries, extraneous text, char-
acters, etc.) or removing redundant portions of an event. Note
that a user can specify portions to be removed using a regular
expression or any other possible technique.

Next, a keyword index can optionally be generated to
facilitate fast keyword searching for events. To build a key-
word index, the indexer first identifies a set of keywords in
block 206. Then, at block 207 the indexer includes the iden-
tified keywords in an index, which associates each stored
keyword with references to events containing that keyword
(or to locations within events where that keyword is located).
When an indexer subsequently receives a keyword-based
query, the indexer can access the keyword index to quickly
identify events containing the keyword.

In some embodiments, the keyword index may include
entries for name-value pairs found in events, wherein a name-
value pair can include a pair of keywords connected by a
symbol, such as an equals sign or colon. In this way, events
containing these name-value pairs can be quickly located. In
some embodiments, fields can automatically be generated for
some or all of the name-value pairs at the time of indexing.
For example, if the string “dest=10.0.1.2” is found in an
event, a field named “dest” may be created for the event, and
assigned a value of “10.0.1.2.”

Finally, the indexer stores the events in a data store at block
208, wherein a timestamp can be stored with each event to
facilitate searching for events based on a time range. In some
cases, the stored events are organized into a plurality of buck-
ets, wherein each bucket stores events associated with a spe-
cific time range. This not only improves time-based searches,
but it also allows events with recent timestamps that may have
a higher likelihood of being accessed to be stored in faster
memory to facilitate faster retrieval. For example, a bucket
containing the most recent events can be stored as flash
memory instead of on hard disk.

Each indexer 102 is responsible for storing and searching a
subset of the events contained in a corresponding data store
103. By distributing events among the indexers and data
stores, the indexers can analyze events for a query in parallel,
for example using map-reduce techniques, wherein each
indexer returns partial responses for a subset of events to a
search head that combines the results to produce an answer
for the query. By storing events in buckets for specific time
ranges, an indexer may further optimize searching by looking
only in buckets for time ranges that are relevant to a query.

Moreover, events and buckets can also be replicated across
different indexers and data stores to facilitate high availability
and disaster recovery as is described in U.S. patent applica-
tion Ser. No. 14/266,812 filed on 30 Apr. 2014, and in U.S.
application patent Ser. No. 14/266,817 also filed on 30 Apr.
2014.

US 9,251,221 Bl

15

FIG. 6 presents a flowchart illustrating how a search head
and indexers perform a search query in accordance with the
disclosed embodiments. At the start of this process, a search
head receives a search query from a client at block 301. Next,
at block 302, the search head analyzes the search query to
determine what portions can be delegated to indexers and
what portions need to be executed locally by the search head.
At block 303, the search head distributes the determined
portions of the query to the indexers. Note that commands that
operate on single events can be trivially delegated to the
indexers, while commands that involve events from multiple
indexers are harder to delegate.

Then, at block 304, the indexers to which the query was
distributed search their data stores for events that are respon-
sive to the query. To determine which events are responsive to
the query, the indexer searches for events that match the
criteria specified in the query. This criteria can include match-
ing keywords or specific values for certain fields. In a query
that uses a late-binding schema, the searching operations in
block 304 may involve using the late-binding scheme to
extract values for specified fields from events at the time the
query is processed. Next, the indexers can either send the
relevant events back to the search head, or use the events to
calculate a partial result, and send the partial result back to the
search head.

Finally, at block 305, the search head combines the partial
results and/or events received from the indexers to produce a
final result for the query. This final result can comprise dif-
ferent types of data depending upon what the query is asking
for. For example, the final results can include a listing of
matching events returned by the query, or some type of visu-
alization of data from the returned events. In another
example, the final result can include one or more calculated
values derived from the matching events.

Moreover, the results generated by system 100 can be
returned to a client using different techniques. For example,
one technique streams results back to a client in real-time as
they are identified. Another technique waits to report results
to the client until a complete set of results is ready to return to
the client. Yet another technique streams interim results back
to the client in real-time until a complete set of results is ready,
and then returns the complete set of results to the client. In
another technique, certain results are stored as “search jobs,”
and the client may subsequently retrieve the results by refer-
encing the search jobs.

The search head can also perform various operations to
make the search more efficient. For example, before the
search head starts executing a query, the search head can
determine a time range for the query and a set of common
keywords that all matching events must include. Next, the
search head can use these parameters to query the indexers to
obtain a superset of the eventual results. Then, during a fil-
tering stage, the search head can perform field-extraction
operations on the superset to produce a reduced set of search
results.

FIG. 7 presents a block diagram illustrating how fields can
be extracted during query processing in accordance with the
disclosed embodiments. At the start of this process, a search
query 402 is received at a query processor 404. Query pro-
cessor 404 includes various mechanisms for processing a
query, wherein these mechanisms can reside in a search head
104 and/or an indexer 102. Note that the exemplary search
query 402 illustrated in FIG. 7 is expressed in Search Pro-
cessing Language (SPL), which is used in conjunction with
the SPLUNK® ENTERPRISE system. SPL is a pipelined
search language in which a set of inputs is operated on by a
first command in a command line, and then a subsequent

10

15

20

25

30

35

40

45

50

55

60

65

16

command following the pipe symbol “I” operates on the
results produced by the first command, and so on for addi-
tional commands. Search query 402 can also be expressed in
other query languages, such as the Structured Query Lan-
guage (“SQL”) or any suitable query language.

Uponreceiving search query 402, query processor 404 sees
that search query 402 includes two fields “IP” and “target.”
Query processor 404 also determines that the values for the
“IP” and “target” fields have not already been extracted from
events in data store 414, and consequently determines that
query processor 404 needs to use extraction rules to extract
values for the fields. Hence, query processor 404 performs a
lookup for the extraction rules in a rule base 406, wherein rule
base 406 maps field names to corresponding extraction rules
and obtains extraction rules 408-409, wherein extraction rule
408 specifies how to extract a value for the “IP” field from an
event, and extraction rule 409 specifies how to extract a value
for the “target” field from an event. As is illustrated in FIG. 7,
extraction rules 408-409 can comprise regular expressions
that specify how to extract values for the relevant fields. Such
regular-expression-based extraction rules are also referred to
as “regex rules.” In addition to specifying how to extract field
values, the extraction rules may also include instructions for
deriving a field value by performing a function on a character
string or value retrieved by the extraction rule. For example,
a transformation rule may truncate a character string, or con-
vert the character string into a different data format. In some
cases, the query itself can specify one or more extraction
rules.

Next, query processor 404 sends extraction rules 408-409
to a field extractor 412, which applies extraction rules 408-
409 to events 416-418 in a data store 414. Note that data store
414 can include one or more data stores, and extraction rules
408-409 can be applied to large numbers of events in data
store 414, and are not meant to be limited to the three events
416-418 illustrated in FIG. 7. Moreover, the query processor
404 can instruct field extractor 412 to apply the extraction
rules to all the events in a data store 414, or to a subset of the
events that have been filtered based on some criteria.

Next, field extractor 412 applies extraction rule 408 for the
first command “Search IP="10*" to events in data store 414
including events 416-418. Extraction rule 408 is used to
extract values for the IP address field from events in data store
414 by looking for a pattern of one or more digits, followed by
a period, followed again by one or more digits, followed by
another period, followed again by one or more digits, fol-
lowed by another period, and followed again by one or more
digits. Next, field extractor 412 returns field values 420 to
query processor 404, which uses the criterion IP="10*" to
look for IP addresses that start with “10”. Note that events 416
and 417 match this criterion, but event 418 does not, so the
result set for the first command is events 416-417.

Query processor 404 then sends events 416-417 to the next
command “stats count target.” To process this command,
query processor 404 causes field extractor 412 to apply
extraction rule 409 to events 416-417. Extraction rule 409 is
used to extract values for the target field for events 416-417 by
skipping the first four commas in events 416-417, and then
extracting all of the following characters until a comma or
period is reached. Next, field extractor 412 returns field val-
ues 421 to query processor 404, which executes the command
“stats count target” to count the number of unique values
contained in the target fields, which in this example produces
the value “2” that is returned as a final result 422 for the query.

Note that query results can be returned to a client, a search
head, or any other system component for further processing.
In general, query results may include: a set of one or more

US 9,251,221 Bl

17

events; a set of one or more values obtained from the events;
a subset of the values; statistics calculated based on the val-
ues; a report containing the values; or a visualization, such as
a graph or chart, generated from the values.

FIG. 9A illustrates an exemplary search screen 600 in
accordance with the disclosed embodiments. Search screen
600 includes a search bar 602 that accepts user input in the
form of a search string. It also includes a time range picker
612 that enables the user to specify a time range for the search.
For “historical searches” the user can select a specific time
range, or alternatively a relative time range, such as “today,”
“yesterday” or “last week.” For “real-time searches,” the user
can select the size of a preceding time window to search for
real-time events. Search screen 600 also initially displays a
“data summary” dialog as is illustrated in FIG. 9B that
enables the user to select different sources for the event data,
for example by selecting specific hosts and log files.

After the search is executed, the search screen 600 can
display the results through search results tabs 604, wherein
search results tabs 604 includes: an “events tab” that displays
various information about events returned by the search; a
“statistics tab” that displays statistics about the search results;
and a “visualization tab” that displays various visualizations
of the search results. The events tab illustrated in FIG. 9A
displays a timeline graph 605 that graphically illustrates the
number of events that occurred in one-hour intervals over the
selected time range. It also displays an events list 608 that
enables a user to view the raw data in each of the returned
events. It additionally displays a fields sidebar 606 that
includes statistics about occurrences of specific fields in the
returned events, including “selected fields” that are pre-se-
lected by the user, and “interesting fields” that are automati-
cally selected by the system based on pre-specified criteria.

The above-described system provides significant flexibil-
ity by enabling a user to analyze massive quantities of mini-
mally processed performance data “on the fly” at search time
instead of storing pre-specified portions of the performance
data in a database at ingestion time. This flexibility enables a
user to see correlations in the performance data and perform
subsequent queries to examine interesting aspects of the per-
formance data that may not have been apparent at ingestion
time.

However, performing extraction and analysis operations at
search time can involve a large amount of data and require a
large number of computational operations, which can cause
considerable delays while processing the queries. Fortu-
nately, a number of acceleration techniques have been devel-
oped to speed up analysis operations performed at search
time. These techniques include: (1) performing search opera-
tions in parallel by formulating a search as a map-reduce
computation; (2) using a keyword index; (3) using a high
performance analytics store; and (4) accelerating the process
of generating reports. These techniques are described in more
detail below.

To facilitate faster query processing, a query can be struc-
tured as a map-reduce computation, wherein the “map”
operations are delegated to the indexers, while the corre-
sponding “reduce” operations are performed locally at the
search head. For example, FIG. 8 illustrates how a search
query 501 received from a client at search head 104 can split
into two phases, including: (1) a “map phase” comprising
subtasks 502 (e.g., data retrieval or simple filtering) that may
be performed in parallel and are “mapped” to indexers 102 for
execution, and (2) a “reduce phase” comprising a merging
operation 503 to be executed by the search head when the
results are ultimately collected from the indexers.

10

15

20

25

30

35

40

45

50

55

60

65

18

During operation, upon receiving search query 501, search
head 104 modifies search query 501 by substituting “stats”
with “prestats” to produce search query 502, and then distrib-
utes search query 502 to one or more distributed indexers,
which are also referred to as “search peers.” Note that search
queries may generally specity search criteria or operations to
be performed on events that meet the search criteria. Search
queries may also specity field names, as well as search criteria
for the values in the fields or operations to be performed on the
values in the fields. Moreover, the search head may distribute
the full search query to the search peers as is illustrated in
FIG. 6, or may alternatively distribute a modified version
(e.g., a more restricted version) of the search query to the
search peers. In this example, the indexers are responsible for
producing the results and sending them to the search head.
After the indexers return the results to the search head, the
search head performs the merging operations 503 on the
results. Note that by executing the computation in this way,
the system effectively distributes the computational opera-
tions while minimizing data transfers.

As described above with reference to the flow charts in
FIGS. 6 and 7, event-processing system 100 can construct and
maintain one or more keyword indices to facilitate rapidly
identifying events containing specific keywords. This can
greatly speed up the processing of queries involving specific
keywords. As mentioned above, to build a keyword index, an
indexer first identifies a set of keywords. Then, the indexer
includes the identified keywords in an index, which associ-
ates each stored keyword with references to events containing
that keyword, or to locations within events where that key-
word is located. When an indexer subsequently receives a
keyword-based query, the indexer can access the keyword
index to quickly identify events containing the keyword.

To speed up certain types of queries, some embodiments of
system 100 make use of a high performance analytics store,
which is referred to as a “summarization table,” that contains
entries for specific field-value pairs. Each of these entries
keeps track of instances of a specific value in a specific field
in the event data and includes references to events containing
the specific value in the specific field. For example, an exem-
plary entry in a summarization table can keep track of occur-
rences of the value “94107” in a “ZIP code” field of a set of
events, wherein the entry includes references to all of the
events that contain the value “94107” in the ZIP code field.
This enables the system to quickly process queries that seek to
determine how many events have a particular value for a
particular field, because the system can examine the entry in
the summarization table to count instances of the specific
value in the field without having to go through the individual
events or do extractions at search time. Also, if the system
needs to process all events that have a specific field-value
combination, the system can use the references in the sum-
marization table entry to directly access the events to extract
further information without having to search all of the events
to find the specific field-value combination at search time.

In some embodiments, the system maintains a separate
summarization table for each of the above-described time-
specific buckets that stores events for a specific time range,
wherein a bucket-specific summarization table includes
entries for specific field-value combinations that occur in
events in the specific bucket. Alternatively, the system can
maintain a separate summarization table for each indexer,
wherein the indexer-specific summarization table only
includes entries for the events in a data store that is managed
by the specific indexer.

The summarization table can be populated by running a
“collection query” that scans a set of events to find instances

US 9,251,221 Bl

19

of a specific field-value combination, or alternatively
instances of all field-value combinations for a specific field. A
collection query can be initiated by a user, or can be scheduled
to occur automatically at specific time intervals. A collection
query can also be automatically launched in response to a
query that asks for a specific field-value combination.

In some cases, the summarization tables may not cover all
of the events that are relevant to a query. In this case, the
system can use the summarization tables to obtain partial
results for the events that are covered by summarization
tables, but may also have to search through other events that
are not covered by the summarization tables to produce addi-
tional results. These additional results can then be combined
with the partial results to produce a final set of results for the
query. This summarization table and associated techniques
are described inmore detail in U.S. Pat. No. 8,682,925, issued
on Mar. 25, 2014.

In some embodiments, a data server system such as the
SPLUNK® ENTERPRISE system can accelerate the process
of periodically generating updated reports based on query
results. To accelerate this process, a summarization engine
automatically examines the query to determine whether gen-
eration of updated reports can be accelerated by creating
intermediate summaries. (This is possible if results from pre-
ceding time periods can be computed separately and com-
bined to generate an updated report. In some cases, it is not
possible to combine such incremental results, for example
where a value in the report depends on relationships between
events from different time periods.) If reports can be acceler-
ated, the summarization engine periodically generates a sum-
mary covering data obtained during a latest non-overlapping
time period. For example, where the query seeks events meet-
ing a specified criteria, a summary for the time period
includes only events within the time period that meet the
specified criteria. Similarly, if the query seeks statistics cal-
culated from the events, such as the number of events that
match the specified criteria, then the summary for the time
period includes the number of events in the period that match
the specified criteria.

In parallel with the creation of the summaries, the summa-
rization engine schedules the periodic updating of the report
associated with the query. During each scheduled report
update, the query engine determines whether intermediate
summaries have been generated covering portions of the time
period covered by the report update. If so, then the report is
generated based on the information contained in the summa-
ries. Also, if additional event data has been received and has
not yet been summarized, and is required to generate the
complete report, the query can be run on this additional event
data. Then, the results returned by this query on the additional
event data, along with the partial results obtained from the
intermediate summaries, can be combined to generate the
updated report. This process is repeated each time the report
is updated. Alternatively, if the system stores events in buck-
ets covering specific time ranges, then the summaries can be
generated on a bucket-by-bucket basis. Note that producing
intermediate summaries can save the work involved in re-
running the query for previous time periods, so only the newer
event data needs to be processed while generating an updated
report. These report acceleration techniques are described in
more detail in U.S. Pat. No. 8,589,403, issued on Nov. 19,
2013, and U.S. Pat. No. 8,412,696, issued on Apr. 2, 2011.

The SPLUNK® ENTERPRISE platform provides various
schemas, dashboards and visualizations that make it easy for
developers to create applications to provide additional capa-
bilities. One such application is the SPLUNK® APP FOR
ENTERPRISE SECURITY, which performs monitoring and

10

15

20

25

30

35

40

45

50

55

60

65

20

alerting operations and includes analytics to facilitate identi-
fying both known and unknown security threats based on
large volumes of data stored by the SPLUNK® ENTER-
PRISE system. This differs significantly from conventional
Security Information and Event Management (SIEM) sys-
tems that lack the infrastructure to effectively store and ana-
lyze large volumes of security-related event data. Traditional
SIEM systems typically use fixed schemas to extract data
from pre-defined security-related fields at data ingestion
time, wherein the extracted data is typically stored in a rela-
tional database. This data extraction process (and associated
reduction in data size) that occurs at data ingestion time
inevitably hampers future incident investigations, when all of
the original data may be needed to determine the root cause of
asecurity issue, or to detect the tiny fingerprints of an impend-
ing security threat.

In contrast, the SPLUNK® APP FOR ENTERPRISE
SECURITY system stores large volumes of minimally pro-
cessed security-related data at ingestion time for later
retrieval and analysis at search time when a live security
threat is being investigated. To facilitate this data retrieval
process, the SPLUNK® APP FOR ENTERPRISE SECU-
RITY provides pre-specified schemas for extracting relevant
values from the different types of security-related event data,
and also enables a user to define such schemas.

The SPLUNK® APP FOR ENTERPRISE SECURITY
can process many types of security-related information. In
general, this security-related information can include any
information that can be used to identify security threats. For
example, the security-related information can include net-
work-related information, such as IP addresses, domain
names, asset identifiers, network traffic volume, uniform
resource locator strings, and source addresses. (The process
of detecting security threats for network-related information
is further described in U.S. patent application Ser. No.
13/956,252, and Ser. No. 13/956,262.) Security-related infor-
mation can also include endpoint information, such as mal-
ware infection data and system configuration information, as
well as access control information, such as login/logout infor-
mation and access failure notifications. The security-related
information can originate from various sources within a data
center, such as hosts, virtual machines, storage devices and
sensors. The security-related information can also originate
from various sources in a network, such as routers, switches,
email servers, proxy servers, gateways, firewalls and intru-
sion-detection systems.

During operation, the SPLUNK® APP FOR ENTER-
PRISE SECURITY facilitates detecting so-called “notable
events” that are likely to indicate a security threat. These
notable events can be detected in a number of ways: (1) an
analyst can notice a correlation in the data and can manually
identify a corresponding group of one or more events as
“notable;” or (2) an analyst can define a “correlation search”
specifying criteria for a notable event, and every time one or
more events satisfy the criteria, the application can indicate
that the one or more events are notable. An analyst can alter-
natively select a pre-defined correlation search provided by
the application. Note that correlation searches can be run
continuously or at regular intervals (e.g., every hour) to
search for notable events. Upon detection, notable events can
be stored in a dedicated “notable events index,” which can be
subsequently accessed to generate various visualizations con-
taining security-related information. Also, alerts can be gen-
erated to notify system operators when important notable
events are discovered.

The SPLUNK® APP FOR ENTERPRISE SECURITY
provides various visualizations to aid in discovering security

US 9,251,221 Bl

21

threats, such as a “key indicators view” that enables a user to
view security metrics of interest, such as counts of different
types of notable events. For example, FIG. 10A illustrates an
exemplary key indicators view 700 that comprises a dash-
board, which can display a value 701, for various security-
related metrics, such as malware infections 702. It can also
display a change in a metric value 703, which indicates that
the number of malware infections increased by 63 during the
preceding interval. Key indicators view 700 additionally dis-
plays a histogram panel 704 that displays a histogram of
notable events organized by urgency values, and a histogram
of notable events organized by time intervals. This key indi-
cators view is described in further detail in pending U.S.
patent application Ser. No. 13/956,338 filed Jul. 31, 2013.

These visualizations can also include an “incident review
dashboard” that enables a user to view and act on “notable
events.” These notable events can include: (1) a single event
of high importance, such as any activity from a known web
attacker; or (2) multiple events that collectively warrant
review, such as a large number of authentication failures on a
host followed by a successful authentication. For example,
FIG. 10B illustrates an exemplary incident review dashboard
710 that includes a set of incident attribute fields 711 that, for
example, enables a user to specify a time range field 712 for
the displayed events. It also includes a timeline 713 that
graphically illustrates the number of incidents that occurred
in one-hour time intervals over the selected time range. It
additionally displays an events list 714 that enables a user to
view a list of all of the notable events that match the criteria in
the incident attributes fields 711. To facilitate identifying
patterns among the notable events, each notable event can be
associated with an urgency value (e.g., low, medium, high,
critical), which is indicated in the incident review dashboard.
The urgency value for a detected event can be determined
based on the severity of the event and the priority of the
system component associated with the event. The incident
review dashboard is described further in “http://docs.splunk-
.com/Documentation/PCI/2.1.1/

User/IncidentReviewdashboard.”

As mentioned above, the SPLUNK® ENTERPRISE plat-
form provides various features that make it easy for develop-
ers to create various applications. One such application is the
SPLUNK® APP FOR VMWARE®, which performs moni-
toring operations and includes analytics to facilitate diagnos-
ing the root cause of performance problems in a data center
based on large volumes of data stored by the SPLUNK®
ENTERPRISE system.

This differs from conventional data-center-monitoring sys-
tems that lack the infrastructure to effectively store and ana-
lyze large volumes of performance information and log data
obtained from the data center. In conventional data-center-
monitoring systems, this performance data is typically pre-
processed prior to being stored, for example by extracting
pre-specified data items from the performance data and stor-
ing them in a database to facilitate subsequent retrieval and
analysis at search time. However, the rest of the performance
data is not saved and is essentially discarded during pre-
processing. In contrast, the SPLUNK® APP FOR
VMWARE® stores large volumes of minimally processed
performance information and log data at ingestion time for
later retrieval and analysis at search time when a live perfor-
mance issue is being investigated.

The SPLUNK® APP FOR VMWARE® can process many
types of performance-related information. In general, this
performance-related information can include any type of per-
formance-related data and log data produced by virtual
machines and host computer systems in a data center. In

25

35

40

45

22

addition to data obtained from various log files, this perfor-
mance-related information can include values for perfor-
mance metrics obtained through an application programming
interface (API) provided as part of the vSphere Hypervisor™
system distributed by VMware, Inc. of Palo Alto, Calif. For
example, these performance metrics can include: (1) CPU-
related performance metrics; (2) disk-related performance
metrics; (3) memory-related performance metrics; (4) net-
work-related performance metrics; (5) energy-usage statis-
tics; (6) data-traffic-related performance metrics; (7) overall
system availability performance metrics; (8) cluster-related
performance metrics; and (9) virtual machine performance
statistics. For more details about such performance metrics,
please see U.S. patent Ser. No. 14/167,316 filed 29 Jan. 2014,
which is hereby incorporated herein by reference. Also, see
“vSphere Monitoring and Performance,” Update 1, vSphere
5.5, EN-001357-00, http://pubs.vmware.com/vsphere-55/
topic/com.vmware.ICbase/PDF/vsphere-esxi-vcenter-
server-551-monitoring-performance-guide.pdf.

To facilitate retrieving information of interest from perfor-
mance data and log files, the SPLUNK® APP FOR
VMWARE® provides pre-specified schemas for extracting
relevant values from different types of performance-related
event data, and also enables a user to define such schemas.

The SPLUNK® APP FOR VMWARE® additionally pro-
vides various visualizations to facilitate detecting and diag-
nosing the root cause of performance problems. For example,
one such visualization is a “proactive monitoring tree” that
enables a user to easily view and understand relationships
among various factors that affect the performance of a hier-
archically structured computing system. This proactive moni-
toring tree enables a user to easily navigate the hierarchy by
selectively expanding nodes representing various entities
(e.g., virtual centers or computing clusters) to view perfor-
mance information for lower-level nodes associated with
lower-level entities (e.g., virtual machines or host systems).
Exemplary node-expansion operations are illustrated in FIG.
10C, wherein nodes 733 and 734 are selectively expanded.
Note that nodes 731-739 can be displayed using different
patterns or colors to represent different performance states,
such as a critical state, a warning state, a normal state or an
unknown/offline state. The ease of navigation provided by
selective expansion in combination with the associated per-
formance-state information enables a user to quickly diag-
nose the root cause of a performance problem. The proactive
monitoring tree is described in further detail in U.S. patent
application Ser. No. 14/235,490 filed on 15 Apr. 2014, which
is hereby incorporated herein by reference for all possible
purposes.

The SPLUNK® APP FOR VMWARE® also provides a
user interface that enables a user to select a specific time range
and then view heterogeneous data, comprising events, log
data and associated performance metrics, for the selected
time range. For example, the screen illustrated in FIG. 10D
displays a listing of recent “tasks and events” and a listing of
recent “log entries” for a selected time range above a perfor-
mance-metric graph for “average CPU core utilization” for
the selected time range. Note that a user is able to operate
pull-down menus 742 to selectively display different perfor-
mance metric graphs for the selected time range. This enables
the user to correlate trends in the performance-metric graph
with corresponding event and log data to quickly determine
the root cause of a performance problem. This user interface
is described in more detail in U.S. patent application Ser. No.
14/167,316 filed on 29 Jan. 2014, which is hereby incorpo-
rated herein by reference for all possible purposes.

US 9,251,221 Bl

23

FIG. 11 illustrates a diagrammatic representation of a com-
puting device 1000 within which a set of instructions for
causing the computing device to perform the methods dis-
cussed herein may be executed. The computing device 1000
may be connected to other computing devices in a LAN, an
intranet, an extranet, and/or the Internet. The computing
device 1000 may operate in the capacity of a server machine
in client-server network environment. The computing device
1000 may be provided by a personal computer (PC), a set-top
box (STB), a server, a network router, switch or bridge, or any
machine capable of executing a set of instructions (sequential
or otherwise) that specify actions to be taken by that machine.
Further, while only a single computing device is illustrated,
the term “computing device” shall also be taken to include
any collection of computing devices that individually or
jointly execute a set (or multiple sets) of instructions to per-
form the methods discussed herein. In illustrative examples,
the computing device 1000 may implement the above
described methods 300A-300B for assigning scores to
objects based on evaluating triggering conditions applied to
datasets produced by search queries.

The example computing device 1000 may include a pro-
cessing device (e.g., a general purpose processor) 1002, a
main memory 1004 (e.g., synchronous dynamic random
access memory (DRAM), read-only memory (ROM)), a
static memory 1006 (e.g., flash memory and a data storage
device 1018), which may communicate with each other via a
bus 1030.

The processing device 1002 may be provided by one or
more general-purpose processing devices such as a micropro-
cessor, central processing unit, or the like. In an illustrative
example, the processing device 1002 may comprise a com-
plex instruction set computing (CISC) microprocessor,
reduced instruction set computing (RISC) microprocessor,
very long instruction word (VLIW) microprocessor, or a pro-
cessor implementing other instruction sets or processors
implementing a combination of instruction sets. The process-
ing device 1002 may also comprise one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), a network proces-
sor, or the like. The processing device 1002 may be config-
ured to execute the methods 300A-300B for assigning scores
to objects based on evaluating triggering conditions applied
to datasets produced by search queries, in accordance with
one or more aspects of the present disclosure.

The computing device 1000 may further include a network
interface device 1008, which may communicate with a net-
work 1020. The computing device 1000 also may include a
video display unit 1010 (e.g., a liquid crystal display (LCD)
or a cathode ray tube (CRT)), an alphanumeric input device
1012 (e.g., a keyboard), a cursor control device 1014 (e.g., a
mouse) and an acoustic signal generation device 1016 (e.g., a
speaker). In one embodiment, video display unit 1010, alpha-
numeric input device 1012, and cursor control device 1014
may be combined into a single component or device (e.g., an
LCD touch screen).

The data storage device 1018 may include a computer-
readable storage medium 1028 on which may be stored one or
more sets of instructions (e.g., instructions of the methods
300A-300B for assigning scores to objects based on evaluat-
ing triggering conditions applied to datasets produced by
search queries, in accordance with one or more aspects of the
present disclosure) implementing any one or more of the
methods or functions described herein. Instructions imple-
menting methods 300A-300B may also reside, completely or
at least partially, within main memory 1004 and/or within

10

15

20

25

30

35

40

45

50

55

60

65

24

processing device 1002 during execution thereof by comput-
ing device 1000, main memory 1004 and processing device
1002 also constituting computer-readable media. The instruc-
tions may further be transmitted or received over a network
1020 via network interface device 1008.

While computer-readable storage medium 1028 is shown
in an illustrative example to be a single medium, the term
“computer-readable storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database and/or associated caches and servers)
that store one or more sets of instructions. The term “com-
puter-readable storage medium” shall also be taken to include
any medium that is capable of storing, encoding or carrying a
set of instructions for execution by the machine and that cause
the machine to perform the methods described herein. The
term “computer-readable storage medium” shall accordingly
be taken to include, but not be limited to, solid-state memo-
ries, optical media and magnetic media.

Unless specifically stated otherwise, terms such as “updat-
ing,” “identifying,” “determining,” “sending,” “assigning,” or
the like refer to actions and processes performed or imple-
mented by computing devices that manipulate and transform
data represented as physical (electronic) quantities within the
computing device’s registers and memories into other data
similarly represented as physical quantities within the com-
puting device memories or registers or other such information
storage, transmission or display devices. Also, the terms
“first,” “second,” “third,” “fourth,” etc. as used herein are
meant as labels to distinguish among different elements and
may not necessarily have an ordinal meaning according to
their numerical designation.

Examples described herein also relate to an apparatus for
performing the methods described herein. This apparatus
may be specially constructed for the required purposes, or it
may comprise a general purpose computing device selec-
tively programmed by a computer program stored in the com-
puting device. Such a computer program may be stored in a
computer-readable non-transitory storage medium.

The methods and illustrative examples described herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used in
accordance with the teachings described herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method operations. The required struc-
ture for a variety of these systems will appear as set forth in
the description above.

The above description is intended to be illustrative, and not
restrictive. Although the present disclosure has been
described with references to specific illustrative examples, it
will be recognized that the present disclosure is not limited to
the examples described. The scope of the disclosure should be
determined with reference to the following claims, along with
the full scope of equivalents to which the claims are entitled.

What is claimed is:

1. A method, comprising:

accessing, by one or more processing devices, a set of

events, wherein each event in the set of events is associ-
ated with a time stamp and includes a portion of machine
data indicative of performance or operation of an infor-
mation technology environment;

accessing an object-scoring rule that (i) includes a search

query that determines when events meet a triggering
condition; (ii) identifies an object representing a com-
ponent of the information technology environment, an
application running in the information technology envi-
ronment, or a person using a component in the informa-
tion technology environment, and (iii) specifies a

29 4¢ 29 4¢

US 9,251,221 Bl

25

numerical contribution to a score for the object, the
numerical contribution to be applied to the score based at
least on part on a determination that the triggering con-
dition is met;

executing the search query of the object-scoring rule

against the set of events to determine if the triggering
condition of the object-scoring rule is met;

based on determining that the triggering condition is met,

generating a record of the numerical contribution speci-
fied in the object-scoring rule, the record associating the
numerical contribution with a time indicator and indi-
cating the object whose score should be affected by the
contribution;

identifying, using one or more records of numerical con-

tributions, a set of numerical contributions having asso-
ciated time indicators falling within a defined time
period; and

calculating the score for the object based on the set of

numerical contributions, wherein the score indicates at
least one of: an indication of a security risk posed by the
component or person that the object represents, an indi-
cation of performance of the component of the informa-
tion technology environment that the object represents,
or an indication of performance of the application that
the object represents.

2. The method of claim 1, wherein the portion of machine
data in each event comprises raw machine data.

3. The method of claim 1, wherein the object-scoring rule
statically identifies the object whose score should be adjusted
when the triggering condition is met.

4. The method of claim 1, wherein the object-scoring rule
variably identifies the object whose score should be adjusted
when the triggering condition is met based on a value for a
field in one or more particular events that caused the trigger-
ing condition to be met, the value for the field derived by
applying an extraction rule or regular expression to the por-
tion of machine data in the one or more particular events.

5. The method of claim 1, wherein the object-scoring rule
statically identifies the numerical contribution to be applied
to the score of the object.

6. The method of claim 1, wherein the object-scoring rule
variably identifies the numerical contribution to be applied to
the score of the object based on a value for a field in one or
more particular events that caused the triggering condition to
be met, the value for the field derived by applying an extrac-
tion rule or regular expression to the portion of machine data
in the one or more particular events.

7. The method of claim 1, wherein the object-scoring rule
variably identifies the numerical contribution to be applied to
the score of the object based on a number of particular events
that caused the triggering condition to be met.

8. The method of claim 1, wherein the triggering condition
includes a value for a field in an event meeting specified
criteria.

9. The method of claim 1, wherein the triggering condition
includes an aggregate calculated for a field in events in the set
of events meeting specified criteria.

10. The method of claim 1, wherein the triggering condi-
tion includes determining that a threshold number of events
meets specified search criteria.

11. The method of claim 1, further comprising receiving a
user request to create a negative score modifier associated
with a particular time.

12. The method of claim 1, further comprising receiving a
request to adjust the object’s score by a particular positive or
negative amount.

10

15

20

25

30

35

40

45

50

55

60

65

26

13. The method of claim 1, further comprising causing
displaying of a graphical interface enabling a user to generate
the object-scoring rule.

14. The method of claim 1, wherein events in the set of
events are derived from log data.

15. The method of claim 1, wherein events in the set of
events are derived from network packet data.

16. The method of claim 1, further comprising:

causing display of object scores for a plurality of objects.

17. The method of claim 1, further comprising:

causing display of object scores for a plurality of objects in

a descending order of score.

18. The method of claim 1, wherein executing the search
query comprises applying a late binding schema to the set of
events, and further comprising:

receiving a selection of a second time period;

determining a second set of numerical contributions,

wherein each of the numerical contribution in the second
set of numerical contributions has an associated time
indicator falling within the second time period, wherein
the associated time indicator specifies a time of occur-
rence of the triggering condition; and

adjusting the score for the object based on an aggregation

of the numerical contributions of the second set of
numerical contributions.

19. The method of claim 1, wherein executing the search
query comprises applying a late binding schema to the set of
events.

20. The method of claim 1, wherein executing the search
query comprises using an extraction rule or regular expres-
sion to the portion of machine data in an event to derive a
value for a field.

21. The method of claim 1, wherein the time indicator
specifies a time of occurrence of the triggering condition.

22. The method of claim 1, wherein the numerical contri-
bution is proportional to a number of occurrences of the
triggering condition.

23. The method of claim 1, wherein the numerical contri-
bution is proportional to a metric associated with a certain
activity of the component, the person or the application rep-
resented by the object.

24. The method of claim 1, further comprising: sending a
message comprising the score for the object.

25. The method of claim 1, further comprising: executing a
shell script having a parameter defined based on the score for
the object.

26. The method of claim 1, further comprising: causing
display of at least a portion of the machine data that triggered
the object-scoring rule.

27. A computer-readable non-transitory storage medium
comprising executable instructions that, when executed by
one or more processing devices, cause the processing devices
to perform operations comprising:

accessing, by the processing devices, a set of events,

wherein each event in the set of events is associated with
a time stamp and includes a portion of machine data
indicative of performance or operation of an information
technology environment;

accessing an object-scoring rule that (i) includes a search

query that determines when events meet a triggering
condition; (ii) identifies an object representing a com-
ponent of the information technology environment, an
application running in the information technology envi-
ronment, or a person using a component in the informa-
tion technology environment, and (iii) specifies a
numerical contribution to a score for the object, the

US 9,251,221 Bl

27

numerical contribution to be applied to the score based at
least on part on a determination that the triggering con-
dition is met;

executing the search query of the object-scoring rule

against the set of events to determine if the triggering
condition of the object-scoring rule is met;

based on determining that the triggering condition is met,

generating a record of the numerical contribution speci-
fied in the object-scoring rule, the record associating the
numerical contribution with a time indicator and indi-
cating the object whose score should be affected by the
contribution;

identifying, using one or more records of numerical con-

tributions, a set of numerical contributions having asso-
ciated time indicators falling within a defined time
period; and

calculating the score for the object based on the set of

numerical contributions, wherein the score indicates at
least one of: an indication of a security risk posed by the
component or person that the object represents, an indi-
cation of performance of the component of the informa-
tion technology environment that the object represents,
or an indication of performance of the application that
the object represents.

28. The computer-readable non-transitory storage medium
of claim 27, wherein the object-scoring rule variably identi-
fies the object whose score should be adjusted when the
triggering condition is met based on a value for a field in one
or more particular events that caused the triggering condition
to be met, the value for the field derived by applying an
extraction rule or regular expression to the portion of machine
data in the one or more particular events.

29. A computer system, comprising:

a memory; and

one or more processing devices, coupled to the memory, to:

access a set of events, wherein each event in the set of
events is associated with a time stamp and includes a
portion of machine data indicative of performance or
operation of an information technology environment;
access an object-scoring rule that (i) includes a search
query that determines when events meet a triggering

25

35

40

28

condition; (ii) identifies an object representing a com-
ponent of the information technology environment,
an application running in the information technology
environment, or a person using a component in the
information technology environment, and (iii) speci-
fies a numerical contribution to a score for the object,
the numerical contribution to be applied to the score
based at least on part on a determination that the
triggering condition is met;

execute the search query of the object-scoring rule
against the set of events to determine if the triggering
condition of the object-scoring rule is met;

based on determining that the triggering condition is
met, generate a record of the numerical contribution
specified in the object-scoring rule, the record asso-
ciating the numerical contribution with a time indica-
tor and indicating the object whose score should be
affected by the contribution;

identify, using one or more records of numerical contri-
butions, a set of numerical contributions having asso-
ciated time indicators falling within a defined time
period; and

calculate the score for the object based on the set of
numerical contributions, wherein the score indicates
atleastone of: an indication of a security risk posed by
the component or person that the object represents, an
indication of performance of the component of the
information technology environment that the object
represents, or an indication of performance of the
application that the object represents.

30. The computer system of claim 29, wherein the object-
scoring rule variably identifies the object whose score should
be adjusted when the triggering condition is met based on a
value for a field in one or more particular events that caused
the triggering condition to be met, the value for the field
derived by applying an extraction rule or regular expression to
the portion of machine data in the one or more particular
events.

